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Motivation

e Can Nanotubes conduct heat well?
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e Which Phonon Modes limit Thermal Conduction?

e Can interacting Nanotubes Spin and Twist?

o e

* [s nanostructured carbon foam the ultimate structural
and thermal material?
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® |Morphology of carbon na.notubéé;"

e Structure of carbon nanotubes:
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e Classification of carbon nanotubes:

—

R = maj + naj

defines uniquely the
(m,n) nanotube

@ -metal e :semiconductor armchair”

e S > g
(n,n): armchair nanotubes (n,0): zig-zag nancoabzs
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Computational Techniques

e Total Energy Calculations

— Ab initio Density Functional Formalism
x Plane-wave code with energy cutoff of 50 Rydbergs
* Soft nonlocal pseudopotentials and Ceperley-Alder exchange-
correlation potential
* 200,000 plane waves in the basis set
— Parametrized Linear Combination of Atomic Orbitals (LCAO)
Formalism
x Parametrization based on ab initio Density Functional re-
sults
x Very fine k-points mesh for the inter-tube interaction
* O(N) technique for very large systems
x Ideally suitable for massively parallel computation

— Tersoff Potential

e Thermodynamics: Monte Carlo simulations

e Time-dependent processes:
Molecular dynamics simulations

e Transport: Landauer-Biittiker Formalism

— Conductance G(FE) evaluated by using




Thermal Conductivity in Nanotubes

VOLUME 84, NUMBER 20 PHYSICAL REVIEW LETTERS 15 May 2000

Unusually High Thermal Conductivity of Carbon Nanotubes

Savas Berber, Young-Kyun Kwon,* and David Tomének

Department of Physics and Astronomy, and Center for Fundamental Materials Research, Michigan State University,
East Lansing, Michigan 48824-1116
(Received 23 February 2000)
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e Experimental Observation for a Nanotube “Mat”
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— Raw data (T' = 300 K): A=0.7 W/m-K
— Extrapolated data (7' = 300 K): Ax~1,800 — 6,000 W/m'K =, 1 iteq



> ‘Approaches and Pitfalls

e Direct Molecular Dynamics Approach
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— Temperature profile in a (10, 10) nanotube
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e Pitfalls of Direct Molecular Dynamics:

— L << (=100 nm
—> velocity rescaling mimics “grain boundary”, limits /
— Large statistical uncertainty
— T'(2) not linear
— dT/dz >> 0 = spatial variation of thermal conductivity



¢ Equilibrium Molecular Dynamics Approach

— Green-Kubo formula for the Navier-Stokes thermal conduc-
tivity:

A= o< J IO - dt
d
J(t) = EggriAei = ZV'&Aei = Z Y rij(fij : Vi)
i i i i{#)

— Heat flux autocorreltation function in a (10, 10) nanotube
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e Pitfalls of Equilibrium Molecular Dynamics:

— Slow convergence
— Extensive ensemble averaging crucial

— Autocorrelation function requires large data storage



e Non-Equilibrium Molecular Dynamics Approach
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— Axial heat flux in a (10, 10) nanotube for F, = 0.2 A"
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— Heat transport dependence on F,
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e Pitfalls of Non-Equilibrium Molecular Dynamics:

— F, — 0 limit requires careful evaluation

— Careful coupling to thermostat required



> }Temperature Dependent Thermal Conductivity

e Thermal conductivity of an isolated
(10,10) carbon nanotube
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e Thermal conductivity of various carbon allotropes
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> ‘Effect of Inter-Wall Interactions on Thermal Conductivity!

e Thermal conductivity of a
(5,5)@(10,10) double-wall carbon nanotube
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e Thermal conductivity of bundled (10,10) nanotubes
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> uﬂﬂ’ect of Isotope Mixture on Thermal Conductivity
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Low-Frequency Phonon Modes
of Nanotubes

» Equilibrium Structure of Bundled and Multi-Wall Tubes

e Interaction between neighboring (10,10) tubes
&

CCeely

— Two-dimensional oblique lattice.




¢ (5,5)@Q(10,10) Double-Wall Tube Geometry

[Electronic and structural properties of multiwall carbon nan-
otubes, Young-Kyun Kwon and David Tomanek, Phys. Rev. B
58, R16001 (1998)]

(5,5)@(10,10) Double-Wall Tube
Ar =20 Az (]
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— Dependence of Energy on Off-Axis Displacement Ar

1.0

AE/N [meV]
© o o ©
M R B @

e
o




> Libration and Rotation Dynamics

e (10,10) tube “ropes” [PRB 58, R13314 (1998)]
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— Librational motion at T' < Tpar

— Libration frequency v~12 — 60 cm ™!

— Experimental observation (W. Holmes et al.):

* Infrared modes at v~15,22,40 cm™

1

* These modes disappear at T30 — 180 K

¢ (5,5)@(10,10) double-wall tube [PRB 58, R16001 (1998)]
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> Soft Phonon Modes of Single-Wall Tubes

Lo
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straight

pinch mode

bend mode

L=lAL

» Thermal Expansion of Single-Wall Tubes
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— Thermal contraction dominates over bond expansion

at low temperatures




» Thermodynamics of Orientational Melting

VOLUME 84, NUMBER 7 PHYSICAL REVIEW LETTERS 14 FEBRUARY 2000

Orientational Melting in Carbon Nanotube Ropes
Young-Kyun Kwon and David Tomdnek
Department of Physics and Astronomy, and Center for Fundamental Materials Research, Michigan State University,

East Lansing, Michigan 48824-1116
(Received 24 August 1999)

e Floppy tubes — unrealistic model
(Torsionally decoupled “layers” within tube)

@ @ telislsk T [K]

— Orientational melting at Ta55 K
— Librational motion for TSToay
— Free rotation at T2Tou

e Rigid tubes - realistic model

(torsional coupling between “layers” within tube)
— Torsion energy
00— o
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* Torsion is thermallv activated during svnthesis  =twiston R-UT682




— Orientational melting
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* Orientational disclocations, introduced during synthesis, are
pinned for T<Toy.
* Axial motion of orientational dislocations corresponds to
tube rotation.
* Orientational melting, described by free “diffusion” of ori-
entational dislocations along tubes, occurs for T2 Tp 22100 K.

* Orientational dislocations (twistons) are scattering centers
for electrons — strong effect on transport (1D system!).
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Morphology of Hybrid Graphitic Foam

*Relationship to graphite

Graphite

Graphene monolayer /
QRN
RO ORGP 00
rem New Hybrid in-between

Diamond and Graphite




*Folding Process

bend

unit cell

64 carbon atoms



*Hybrid Graphitic Foam

sp2 carbon atoms

J LY

Terrace size — ©O: graphite
Terrace size — 0: diamond

Present study:
*Optimized structure
*Elastic properties sp carbon atoms
*Electronic structure




Optimized Structure

a=16.44 A
b=9.58 A
c=3.28 A
p=2.48 g/cm3



Elastic Properties

New graphitic foam Graphite Diamond
P 2.48 g/cm3 2.27 g/cm3  3.51 g/cm3
C11 (along a axis) 9.02 Mbar 12.3 Mbar 11.29 Mbar
Co2 (along b axis) 9.42 Mbar
C33 (along c axis) 0.816 Mbar 0.34 Mbar
Bulk modulus 0.792 Mbar 0.326 Mbar 4.69 Mbar




Electronic Structure

Density
] ] Band Structure
Brillouin of States
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Graphitic foam is metallic: N(E:)=1.0 states/eV/spin



Summary and Conclusions

e We studied the structural rigidity, phonon modes, and thermal
conductivity of carbon nanostructures: nanotubes and graphitic
foam.

e We found that

— The unusually high thermal conductance of nanotubes
results from the large phonon mean free path.

— Weak inter-tube coupling results in a very soft librational
motion.

— Orientational dislocations are frozen in during the syn-
thesis of interacting nanotubes. Relatively free diffusion mo-
tion of orientational dislocations occurs for TR Tp ~160 K,
marking the onset of orientational melting.

— Hybrid graphitic foam offers an unsusual combina-
tion of properties: low mass density, high structural rigid-
ity, possibly high electric and thermal conductivity.
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